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Two novel finite element schemes were earlier proposed to reduce the meshing effort needed for prac-
tical finite element analysis and their promising performance was demonstrated in the AMORE
(AMORE stands for Automatic Meshing with Overlapping and Regular Elements) framework. In the first
scheme ‘‘overlapping finite elements” are established that combine advantages of meshless and tradi-
tional finite element methods. A key step is to use polynomial interpolations for the rational shape func-
tions in the meshless method. The scheme enables effective, accurate, and element distortion insensitive
numerical solutions. In the second scheme, individual meshes are allowed to overlap quite freely. In our
earlier papers we gave illustrative examples and also brief discussions on the convergence of the schemes
when used in AMORE. We now focus on presenting deeper insights into the convergence properties
through theory and novel illustrative solutions.

� 2020 Elsevier Ltd. All rights reserved.
1. Introduction

Many numerical algorithms for the solution of partial differen-
tial equations have been developed of which finite element meth-
ods have, overall, remained by far most prominent for use in
engineering and the sciences. However, although abundantly
employed, we have not yet harnessed the full potential of finite
element methods because a large human effort is usually needed
for establishing an effective spatial discretization — the finite ele-
ment mesh — for the problem to be solved [1].

Our work has focused on the overlapping finite elements to sig-
nificantly reduce the effort of meshing [2–5]. Overlapping ele-
ments were formulated as overlapped regions of polygonal
‘‘elements”. On each polygonal ‘‘element”, a local interpolation is
established using the method of finite spheres [6], which is a
robust meshless method [7], and then these local fields are com-
bined using traditional shape functions. As a result, the overlap-
ping finite element interpolation suffers from much less
sensitivity to mesh distortions compared with traditional finite
element formulations. An important key step is the interpolation
of the rational functions in the method of finite spheres so that
the final shape functions are local polynomials. This approach leads
to a reduced number of quadrature points. To complement the
overlapping element approach, we also proposed a scheme of over-
lapping meshes. The idea is quite natural: independent meshes are
spanned over the domain to be analyzed with these meshes over-
lapping and together discretizing the complete analysis domain.
Any interpolation technique may be used on each mesh. Here the
key is to use appropriate weight functions for each mesh since
the mesh interpolations are combined using a partition of unity
formulation. The implementation requires an algorithm for the tri-
angulation of the overlapped regions for the numerical integration,
and we used the plane sweep-based mesh overlay procedure [8,9]
to establish the required information.

These new schemes play central roles in the AMORE paradigm.
AMORE is a general solution procedure for any CAD or computer-
ized scan representation of physical objects [2–5,10–12]. In the
discretization, regular (low-order) traditional finite elements are
used to discretize the interior part and the novel overlapping inter-
polations are used near the boundaries. To reduce the meshing
effort, a boundary mesh may either be created using simple rules,
e.g. constrained Delaunay triangulation, or be allowed to overlap
the interior mesh. In the first case, overlapping elements are effec-
tive as they yield a high-order convergence and are insensitive to
mesh distortions. In the second case, overlapping meshes are nat-
urally used and the proposed scheme is an effective procedure for
coupling the interpolations of the independent meshes.

Of course, allowing ‘‘elements” or ‘‘cells” to overlap is not a new
idea. Successful applications have already been reported in compu-
tational fluid mechanics; specifically the so-called Chimera or
overset grids were used for finite difference and finite volume
methods [13–15]. A corresponding procedure in finite element
methods was not proposed as the compatibility requirements have
to be satisfied. Researchers therefore worked on alternative
approaches to alleviate the meshing issue such as the generalized
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finite element method [16–18], the fictitious domain method
[19,20], domain decomposition methods [21], Nitsche’s method
[22,23], and discontinuous Galerkin methods [24,25]. The general-
ized finite element method shares some similarities with the ficti-
tious domain method. Indeed, both methods avoid directly
meshing the domain by covering the complex domain with a lar-
ger, regular mesh. The basic principles however differ. In the gen-
eralized finite element method, the variational problem is not
changed and the numerical integration is only performed on the
physical domain. On the other hand, in the fictitious domain
method the governing discretization is derived from an extended
variational problem and the original boundary conditions are
imposed using Lagrange multipliers. In domain decomposition
methods, the original problem is converted into several coupled
problems for subdomains, which are usually solved iteratively to
yield the solution of the complete problem to be solved. In
Nitsche’s method non-matching grids are considered and the inter-
face conditions are imposed using the penalty method. In discon-
tinuous Galerkin methods, each element has its own degrees of
freedom and the continuity conditions are imposed weakly
through the flux.

In engineering applications of finite elements for solids and
structures, simple stable procedures with no adjustable penalty
coefficients, no Lagrange multipliers, and no numerical stabiliza-
tion are much preferred [1]. Also, in linear analysis, the governing
matrix equations should be symmetric positive definite with a
minimum number of equations for reliable and efficient solution
using direct sparse solvers. In addition, since traditional finite ele-
ment methods have been used for many years, a new scheme best
retains as many traditional features as possible so that the proce-
dure is user-friendly. Based on these considerations, we proposed
the overlapping elements and overlapping meshes for the analysis
of solids and structures. Their promising performance suggests
that these schemes when used in AMORE provide practical solu-
tions to reducing the effort of meshing.

In this paper, we first briefly review in Section 2 the basic for-
mulations of overlapping elements and overlapping meshes with
emphasis on some key points. We only consider two-dimensional
analyses but the theory is largely applicable also for three-
dimensional solutions. Next, we give in Section 3 a numerical
example to illustrate the use of these schemes in the AMORE para-
digm. More examples can be found in our previous papers [3–5]. In
Section 4, we analyze the convergence rates of these methods.
While the ingredients used in these convergence analyses are stan-
dard, an interesting and nontrivial case arises when the overlap-
ping of the meshes becomes very thin/small. We give illustrative
numerical solutions for this case and establish an error bound for
a one-dimensional example. Finally, we present in Section 5 our
conclusions and an outlook.
Fig. 1. (a) A typical polygonal ‘‘element” DI1 and its local support SI1 . (b) Four
polygonal ‘‘elements” overlap on the quadrilateral ee.
2. Properties of overlapping elements and overlapping meshes

The objective in this section is to briefly review the formula-
tions of overlapping elements and overlapping meshes, with
emphasis on key aspects.
2.1. Overlapping elements

Consider a conforming mesh of triangles and quadrilaterals
spanning over the analysis domain. The (triangular and quadrilat-
eral) overlapping elements are formulated as the overlapped
regions of polygonal ‘‘elements”, as shown in Fig. 1. Each node is
attached to a polygonal ‘‘element” formed by all triangles and
quadrilaterals sharing the node.
2

The interpolation (of a scalar function) on a quadrilateral over-
lapping element is given by

uðxÞ ¼
X4
I¼1

hIðxÞwIðxÞ; ð1Þ

where hIðxÞ is the traditional shape function for a 4-node finite ele-
ment, and wIðxÞ is the local interpolation that we establish in the
polygonal ‘‘element” DI using the method of finite spheres [6]. Sim-
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ilarly, for a triangular overlapping element uðxÞ ¼ P3
I¼1hIðxÞwIðxÞ

where we use for the hIðxÞ the linear shape functions of triangles.
We see that the final interpolation is based on a composite scheme
drawing on advantages of meshless methods and traditional finite
element methods.

The local interpolation can be expressed as

wIðxÞ ¼
X
K

/I
KðxÞ uKðxÞ; ð2Þ

where /I
KðxÞ is the Shepard function and uKðxÞ is the nodal unknown

function. Since Shepard functions are rational functions that for the
integration require a large number of quadrature points for a rea-
sonable accuracy, we further interpolate the Shepard functions
using high-order isoparametric polynomials. This interpolation is
chosen to satisfy the compatibility conditions and reach an effective
scheme for overall solution accuracy.

The final interpolations for quadrilateral and triangular overlap-
ping elements are given by

uðxÞ ¼ P4
I¼1qIðxÞ uIðxÞ for quadrilaterals; and

uðxÞ ¼ P3
I¼1qIðxÞ uIðxÞ for triangles;

ð3Þ

where qIðxÞ is the new shape function, which is a local polynomial,
a cubic function in each of the local coordinates, and uIðxÞ is the
nodal unknown function with to be solved for degrees of freedom.
If we use the quadratic basis as the nodal unknown function, we
have uIðxÞ ¼ aI1 þ aI2xþ aI3yþ aI4x2 þ aI5xyþ aI6y2. Other suitable
functions may also be used as nodal unknown functions, for appli-
cations to solve wave propagation problems see [26,27].

The detailed construction of the overlapping interpolations can
be found in our previous papers [3,4], where the imposition of
boundary conditions and the coupling to traditional finite elements
are also discussed. We note that the overlapping elements are used
in a finite element program in the same manner as traditional
finite elements, but the bandwidth is now larger because of the lar-
ger number of degrees of freedom per node. However, each over-
lapping finite element is more powerful (see Section 4), so that
coarser meshes can be used for the analysis and in AMORE the
overlapping elements are usually only used near the boundaries
of the domain as demonstrated in Section 3.

2.2. Overlapping meshes

Using overlapping meshes, the premise is that for complex
geometries, the difficulties of meshing may be overcome by using
independent meshes over different parts of the object. These
meshes overlap to form a spatial discretization of the complete
analysis domain. A schematic description is shown in Fig. 2(a),
where a boundary mesh overlaps the interior mesh.

In general, the domain is covered by subdomains that together
cover the whole domain, with each subdomain meshed using
existing algorithms. The key points of the scheme are then how
the interpolation fields of the subdomains are combined and how
an effective implementation is established.

Considering as an example the case of Fig. 2(b), the domain X is
decomposed into three subdomains Xi (i = 1, 2, 3). Each subdomain
boundary is divided into an interior part C�

i , which is inside the
analysis domain, and an exterior part Ci. The (regular and quasi-
uniform) mesh on Xi is denoted by Ti. The shortest distance
between the interior boundary of Xi and the interior boundary of
[j–iXj is denoted by h�

i (see Fig. 2(c) for the example). Let
h� ¼ minifh�

i g considering all i. The maximum element size of Ti

is denoted by hi.
Assume a continuous local (scalar) approximation uiðxÞ is con-

structed on Ti. The final global approximation is expressed as
3

u ¼
X
i

wiðxÞuiðxÞ; ð4Þ

where wiðxÞ is a continuous, non-negative weight function based on
the overlapping of the meshes. To satisfy the polynomial reproduc-
ing condition, we must have

P
iwiðxÞ ¼ 1 for all points on the anal-

ysis domain. In addition, we want the final interpolation to be
identical to the local interpolation if an element does not overlap
with any other mesh. As a result, each weight function must vanish
outside its corresponding subdomain. In the proposed implementa-
tion, the weight functions are all piecewise linear functions such
that the numerical integration effort is not expensive. We identify
the overlapping and non-overlapping elements, after which we tri-
angulate the overlapping regions. On each individual mesh, a local
weight function is interpolated and normalized to satisfy the parti-
tion of unity property.

Detailed descriptions of the interpolation and the algorithms
used are given in our previous paper [5] where the imposition of
the boundary conditions and stability conditions are also
discussed.

We note that the proposed scheme requires the overlapping
meshes to match on the boundary of X. In addition, the overlap-
ping size h� must be strictly positive. Then the weight functions
are well-defined and satisfy all the conditions mentioned above.
Since each local interpolation is compatible in its subdomain, and
each weight function is non-negative, continuous and vanishes
outside the corresponding subdomain, the global interpolation is
also continuous. Further, we see from the basic requirements of
the weight functions that each wi vanishes on the interior bound-
ary of Xi andwi ¼ 1 on the interior boundary of [j–iXj. We can thus
reasonably assume that for any point in Xi,

@wi
@x

�� �� 6 C
minfhi ;h�i g

6 C
minfhi ;h�g ;

@wi
@y

��� ��� 6 C
minfhi ;h�i g

6 C
minfhi ;h�g ;

ð5Þ

where hi is the maximum element size of Ti and C is a constant.
Here the element size hi enters because the weight functions are
interpolated on their own mesh (and then normalized). We assume
that h� is sufficiently large to have chi 6 h� for all i, where c is a pos-
itive constant.

3. The use of overlapping elements and overlapping meshes in
AMORE

We give here a numerical example to demonstrate the use of
overlapping elements and overlapping meshes in the AMORE para-
digm. As shown in Fig. 3, a plate is loaded along the inside wall of
its hole by a uniform torsion. We solve the problem assuming
plane stress conditions (and use consistent units in this and all
other analysis results given below).

In Fig. 4(a), regular square 4-node incompatible modes ele-
ments are used for the interior domain of the plate, and overlap-
ping elements are employed near the curved boundary. The 4-
node incompatible elements (shown in blue) perform well since
they are of square geometry [1,28]. The overlapping elements
using the quadratic basis (shown in red) can be generated rela-
tively easily because they are not sensitive to element distortions.
The green 4-node elements are coupling the non-overlapping and
the overlapping elements, see References [3,4] for details.

In Fig. 4(b), we give the overlapping meshes used. For the mesh
of the interior of the plate, again 4-node incompatible modes ele-
ments are used and for the mesh for the curved boundary near
the hole 9-node elements are employed. In Fig. 4(c), we present
how the two meshes overlap and how the region of overlapping
(blue) is further triangulated merely for the numerical integration
(hence the high distortions in this triangulation are of no conse-



Fig. 2. (a) A boundary mesh overlapping the interior mesh. (b) A typical decomposition into subdomains and the notations for interior boundaries and exterior boundaries. (c)
The overlapping size h�

1 is the shortest distance between the interior boundary of the subdomain X1 and the interior boundary of X2 [X3.
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quence). The numerical integrations are exact when the overlap-
ping meshes are not distorted [1,5]. If the strain matrices are both
from 4-node elements, we use 6 integration points; if the strain
4

matrices are both from 9-node elements, we use 16 points; and
if one element is a 4-node element and the other is a 9-node ele-
ment, we use 12 points.



Fig. 3. A plate loaded on its hole.

J. Huang and Klaus-Jürgen Bathe Computers and Structures 244 (2021) 106429
Finally, in Fig. 4(d), we show the mesh of 4-node incompatible
modes elements used in ADINA for a comparison solution.

Some numerical results are listed in Table 1 and plotted in
Fig. 5. The reference solutions have been obtained using a very fine
9-node element mesh in ADINA. Overall, the AMORE meshes give
very reasonable numerical predictions. We note that the stress
results in ADINA are extrapolated from the stresses at the Gauss
points and then averaged. The stress results for the overlapping
elements are simply averaged at nodes, and could be improved
using, for example, the scheme given in Reference [29]. The stress
results for the overlapping meshes are non-smoothed, but since
high-order elements are used around the hole, the local stress pre-
dictions are accurate. To give an indication of the stiffness matrices
used, we list the number of degrees of freedom (DOFs) and the
number of non-zero sparse matrix entries (NNZ). While, depending
on the problem solved, the solution times using the meshes in
AMORE may be larger than using a traditional finite element mesh,
the savings in hours (or days) used in the meshing of an analysis
domain are very desirable.
Fig. 4. (a) The AMORE mesh using overlapping elements (red). (b) The AMORE
mesh using overlapping meshes. (c) In the overlapping meshes, the red cells
correspond to non-overlapping elements and the blue overlapped region is
triangulated. (d) The finite element mesh used in ADINA for the results in Table 1.
(For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)
4. Convergence of methods

Our objective in this section is to discuss the properties of con-
vergence when overlapping elements and overlapping meshes are
used.

4.1. Preliminaries

We focus on the solution of a well-posed static problem in two-
dimensional linear elasticity. Let X be a bounded open connected
subset of the plane with a Lipschitz-continuous boundary @X. Let
Su (displacement boundary) be a subset of @X with strictly positive
length, and Sf ¼ @X� Su (the force boundary). The stress tensor is
denoted by sij, and the strain tensor is denoted by �ij. The displace-
ment field u ¼ ðu1;u2Þ is the solution of the following system of dif-
ferential equations:

sij;jðuÞ þ f i ¼ 0
sijðuÞ ¼ k�kkðuÞdij þ 2l�ijðuÞ
�ijðuÞ ¼ 1

2 ui;j þ uj;i
� �

9>=
>;; ð6Þ

subject to boundary conditions

u ¼ 0on Su
sijðuÞnj ¼ gi on Sf

�
; ð7Þ

where we use the Einstein summation convention, 1 6 i; j 6 2 are
indices, commas in subscripts are used to represent partial deriva-
tives, n ¼ ðn1;n2Þ is the unit outer normal of @X, f ¼ ðf 1; f 2Þ is the
body force vector, g ¼ ðg1; g2Þ is the vector of boundary tractions,
and k and l are material constants.
5

In the following discussion, jj � jjk;X is the Hk norm over X and

j � jk;X is the Hk semi-norm over X. We simply write jj � jjk and j � jk
whenever the domain X is clearly implied.

The weak solution u 2 V of the differential equations satisfies
[1]

aðu;vÞ ¼ f ðvÞ; 8v 2 V ; ð8Þ
where

aðu;vÞ ¼
Z
X

kui;iv j;j þ 2l�ijðuÞ�ijðvÞ
� �

dX; ð9Þ



Table 1
Numerical solutions for the plate problem.

Overlapping elements Overlapping meshes Traditional Finite element mesh Reference

Energy 0.1784 0.1791 0.1782 0.1794
umax 0.03931 0.03941 0.03929 0.03946
sxymax 1.841 1.782 1.766 1.809

s
�
max

3.572 3.485 3.478 3.508

Number of DOFs 2978 2370 3124 >37,000
NNZ 145,984 86,970 28,301 >610,000

J. Huang and Klaus-Jürgen Bathe Computers and Structures 244 (2021) 106429
f ðvÞ ¼
Z
X
f � vdXþ

Z
Sf

g � vdS; ð10Þ

in which we assume f i 2 L2ðXÞ and gi 2 L2ðSf Þ (i = 1, 2), and

V ¼ fðv1;v2Þ j v i 2 H1ðXÞ and v i ¼ 0 on Sug is the space of kinemat-
ically admissible displacements equipped with the H1 norm

jjvjj1 ¼ P2
i¼1jjv ijj21

� 	1=2
. The bilinear form að�; �Þ is continuous, and

also coercive provided the material parameters are reasonable
and the displacement constraints are sufficient [1,30–33]. The vari-
ational problem (8) then has a unique solution, and also, the energy
norm jjv jje ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aðv;vÞp

is equivalent to the H1 norm and the H1

semi-norm jvj1 ¼ P2
i¼1jv ij21

� 	1=2
.

For the convergence analysis, we assume that the spatial dis-
cretization is geometrically exactly representing the domain of
analysis. Since the interpolations are continuous, the discretized
space Vh is a finite-dimensional subspace of V [1,31–33]. The
numerical solution uh 2 Vh then satisfies the variational problem

aðuh;vhÞ ¼ f ðvhÞ; 8 vh 2 Vh: ð11Þ
In the following, we ignore the effect of numerical integration

and assume that all integrations are exact. In such case, Céa’s
lemma gives jju� uhjj 6 C inf

vh2Vh

jju� vhjj with C a constant deter-

mined by the bilinear form [1,31–33], where jj � jj represents any
norm equivalent to the H1 norm. For simplicity, we only need to
consider the approximation error of one displacement component
u in the H1 semi-norm.

4.2. Convergence of overlapping elements

The overlapping elements share many similarities with tradi-
tional finite elements. However, the analysis is easier if we view
them as special cases of meshless methods. We therefore directly
estimate the approximation error in the global coordinate system.

For simplicity, we assume the exact solution u has bounded
derivatives up to the order (k + 1) where k is the order of nodal
basis polynomials. As is usual, we consider a regular and quasi-
uniform mesh.

Recall that DI represents the union of all triangles and quadrilat-
erals coupling into the node I. For a point x in the polygonal ‘‘ele-
ment” DI , the line segment from node I to point x is contained in
the analysis domain. The Taylor series expansion along this line
then allows us to find a local polynomial approximation u�

I of order
k such that

juðxÞ � u�
I ðxÞj 6 Crkþ1

I

@ uðxÞ�u�I ðxÞ½ �
@x

����
���� 6 CrkI

@ uðxÞ�u�I ðxÞ½ �
@y

����
���� 6 CrkI

9>>>>>=
>>>>>;

ð12Þ

holds for all x 2 DI , where rI is the support radius for DI , and C is a
generic constant independent of the element size. Here rI is equiv-
alent to the maximum overlapping element size h.
6

We reasonably assume in addition that

jqIðxÞj 6 C
@qIðxÞ
@x

��� ��� 6 C
rI

@qIðxÞ
@y

��� ��� 6 C
rI

9>>>=
>>>;

ð13Þ

holds for all x 2 DI.
Then using

P
IqI ¼ 1, the approximation error of u� ¼ P

IqIu
�
I in

the H1 semi-norm is

ju� u�j21 ¼ R
X

@
@x ðu� u�Þ�� ��2 þ @

@y ðu� u�Þ
��� ���2� �

dX

¼ R
X

@
@x

P
IqIðu� u�

I Þ
�� ��2 þ @

@y

P
IqIðu� u�

I Þ
��� ���2� �

dX:

ð14Þ

Using the relations (12) and (13) we thus have

ju� u�j21 6 Ch2k
; ð15Þ

where C is a constant independent of the maximum overlapping
element size h, and we conclude from Céa’s lemma that the overlap-
ping elements with the k-th-order basis lead to a convergence rate
of k.

A numerical example illustrating the convergence rates was
reported in Reference [4].

4.3. Convergence of overlapping meshes

The convergence of traditional elements that do not overlap is
well-established; hence our task reduces to estimating the approx-
imation error over the overlapped regions. For this purpose we use
the assumption (5).

Let ki be the order of finite elements in mesh Ti. Assume that
the exact solution u satisfies the standard regularity condition
jjujjmaxifkiþ1g;X 6 þ1. Each subdomain Xi can be divided into an

overlapping part Xi;o ¼ Xi \ [j–iXj
� �

and a non-overlapping part
Xi;no ¼ Xi �Xi;o. Using the classic interpolation theory [1,31–34],
we can find an approximation u�

i on subdomain Xi such that

ju� u�
i j21;Xi

¼ ju� u�
i j21;Xi;no

þ ju� u�
i j21;Xi;o

6 Ch2ki
i ;

k u� u�
i k20;Xi

¼ k u� u�
i k20;Xi;no

þ k u� u�
i k20;Xi;o

6 Ch2kiþ2
i ;

ð16Þ

where C is a generic constant independent of the maximum ele-
ment size hi of the mesh.

Taking u� ¼ P
iwiu�

i as a global approximation, the approxima-
tion error is

ju� u�j21;X ¼ ju� u�j21;[iXi;o
þP

iju� u�j21;Xi;no

¼ ju� u�j21;[iXi;o
þP

iju� u�
i j21;Xi;no

6 ju� u�j21;[iXi;o
þ C

P
ih

2ki
i ;

ð17Þ

where the first and second terms on the right-hand side represent
the errors over the overlapping and the non-overlapping regions,
respectively. Also



Fig. 5. (a.1) The numerical solution for the horizontal displacement using AMORE with overlapping elements. (a.2) The numerical solution for the horizontal displacement
using AMORE with overlapping meshes. (a.3) The reference solution for the horizontal displacement. (b.1) The numerical solution (averaged) for the shear stress sxy using
AMORE with overlapping elements. (b.2) The numerical solution (non-smoothed) for the shear stress sxy using AMORE with overlapping meshes. (b.3) The reference solution
for the shear stress sxy . (c.1) The numerical solution (averaged) for the effective stress s

�
using AMORE with overlapping elements. (c.2) The numerical solution (non-

smoothed) for the effective stress s
�
using AMORE with overlapping meshes. (c.3) The reference solution for the effective stress s

�
.
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ju� u�j21;[iXi;o
¼ R

[iXi;o

@ðu�u�Þ
@x

h i2
þ @ðu�u�Þ

@y

h i2� �
dX

¼ R
[iXi;o

@
P

i
ðwiðu�u�

i
ÞÞ

@x

� 
2
þ @

P
i
ðwiðu�u�

i
ÞÞ

@y

� 
2( )
dX;

ð18Þ

since u ¼ P
iwiu. We then have
7

@
P

i
ðwiðu�u�

i
ÞÞ

@x

� 
2
¼ P

i
@wi
@x ðu� u�

i Þ þ
P

iwi
@ðu�u�

i
Þ

@x

h i2
6

P
i
@wi
@x ðu� u�

i Þ
�� ��þP

i wi
@ðu�u�

i
Þ

@x

��� ���h i2
6 2m

P
i
@wi
@x ðu� u�

i Þ
�� ��2 þP

i wi
@ðu�u�

i
Þ

@x

��� ���2� 

;

ð19Þ
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where the last inequality is due to the Cauchy-Schwarz inequalityPn
i¼1aibi

� �2 6
Pn

i¼1a
2
i

� � Pn
i¼1b

2
i

� 	
with n ¼ 2m, ai ¼ 1 for

i ¼ 1; . . . ;n, bi ¼ @wi
@x ðu� u�

i Þ
�� �� for i ¼ 1; . . . ;m, and bmþi ¼ wi

@ðu�u�
i
Þ

@x

��� ���
for i ¼ 1; . . . ;m. We note that the bound is not sharp because
ai ¼ hbi is unlikely to hold for a constant h. A similar result holds

for
@
P

i
ðwiðu�u�

i
ÞÞ

@y

� 
2
.

Substituting these bounds into equation (18) and using (5) and
(16) yields

ju� u�j21;[iXi;o
6 C

R
[iXi;o

P
i vXi;o

1
minfhi ;h�g2

ju� u�
i j2

� 	n
þP

i vXi;o

@ðu�u�
i
Þ

@x

��� ���2� 

þP

i vXi;o

@ðu�u�
i
Þ

@y

��� ���2� 
�
dX

6 C
P

i
1

minfhi ;h�g2
k u� u�

i k20;Xi;o

� 	
þ C

P
iju� u�

i j21;Xi;o

6 C
P

i
h2i

minfhi ;h�g2
h2ki
i

� 	
þ C

P
ih

2ki
i ;

ð20Þ

where vXi;o
equals 1 on Xi;o and vanishes outside Xi;o. If the over-

lapped regions are thick enough, i.e. chi 6 h� for all i, where c is a

positive constant, we have ju� u�j21;[iXi;o
6 C

P
ih

2ki
i . The total

approximation error is then

ju� u�j21;X 6 C
X
i

h2ki
i : ð21Þ

As expected, if all meshes have close element sizes, the global
convergence rate is determined by finite elements of the lowest
order.
4.4. A limit case of overlapping meshes

The error bound for overlapping meshes relies on the assump-
tion that all overlapped regions are thick enough. The bound is
not applicable if we let the overlapping size h� ! 0 while keeping
all hi (i = 1, . . .,m) finite. We are interested to see whether the solu-
tion converges in the limit case of h� ! 0, and if an error bound
independent of h� can be established. Two numerical examples
are studied for this purpose.
Fig. 6. (a) The thin beam problem: total applied force = 1, E ¼ 106, m ¼ 0:3, unit thickness
except for the leftmost element in the red mesh. (For interpretation of the references to
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4.4.1. A thin beam problem
We solve the thin beam problem shown in Fig. 6(a). The refer-

ence solution of the deflection (using Timoshenko beam theory)
at the free end is 0.1081. The two overlapping 9-node finite ele-
ment meshes are shown in Fig. 6(b). The overlapping size is
denoted by h�.

As h� tends to zero, we keep all elements at the constant
length = 1 except for the leftmost red element which decreases in
length. We would like that in the limit case, the numerical solution
corresponds to the conforming mesh solution using six equal size
9-node elements. This is indeed the case as shown in Table 2, in
which h� ¼ 0 represents the conforming mesh solutions with six
equal elements.
4.4.2. A thick beam problem
We consider now a thick beam with more complicated overlap-

ping meshes, as plotted in Fig. 7. By definition, the overlapping size
h� ¼ minfa; bg. The numerical solutions of the strain energy are
listed in Table 3. The limit mesh is also solved using the gluing
mesh feature in ADINA. The solution for the strain energy using
the gluing mesh feature in ADINA [35] with a ¼ b ¼ 0 is
2.45995E + 01, and hence slightly different from the value given
in Table 3 for the case a ¼ b ¼ 0:0001.

It can be seen that as h� ¼ a ¼ b ! 0:0001, the energy solution
does not increase monotonically. Indeed, we cannot expect mono-
tonic convergence. Also, the energy solutions given in Table 3 are
not symmetric with respect to a and b because the triangulation
used for the numerical integration (see Section 3) was not symmet-
ric. This emphasizes that further research is needed to establish
more effective integration schemes [5].
4.4.3. Discussion
Although we realize that the solutions do not necessarily con-

verge monotonically as the overlap decreases in size
(h� ! 0:0001), we observed that, at least for the two example prob-
lems, the solution difference is small when compared to a single
mesh solution or a gluing mesh solution. Another important obser-
vation is that the condition number of the stiffness matrix obtained
with a small overlapping size is very large, and increases rapidly as
the overlapping size decreases. Therefore, it is best to use moder-
ately thick overlapped regions.
, plane stress assumption. (b) The overlapping size h� . All elements are of unit length
color in this figure legend, the reader is referred to the web version of this article.)



Table 2
Numerical solutions at different overlapping sizes h� .

h� 0.5 0.1 0.01

Tip deflection 0.106946 0.107049 0.107040
Energy 5.34726E�02 5.35241E�02 5.35194E�02

h� 0.001 0.0001 0

Tip deflection 0.107035 0.107034 0.107034
Energy 5.35174E�02 5.35168E�02 5.35167E�02

Fig. 7. (a) The thick beam. (b) A 9-node element mesh is overlapping a 4-node
element mesh. The amount of overlapping is parametrized by a and b.

Fig. 8. (a) A linear element overlaps a quadratic element. (b) The weight functions.
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4.4.4. A one-dimensional case
We are able to show that in the one-dimensional case, the over-

lapping meshes yield an error bound independent of the overlap-
ping size. This also partially explains the convergence results
obtained in the solution of the thin beam problem, since the over-
lapping is essentially one-dimensional. The extension to special
cases in two dimensions should not be difficult.

We consider the overlapping of a linear element and a quadratic
element, as shown in Fig. 8(a). The weight functions are given in
Fig. 8(b). The first-order derivatives of the weight functions satisfy

dwi

dx

����
���� ¼ 1

h� ði ¼ 1;2Þ: ð22Þ
Table 3
Numerical solutions of strain energy for different parameters (a, b).

b a

0.2 0.1

0.2 2.46632E+01 2.46658E+01
0.1 2.46779E+01 2.46891E+01
0.01 2.46844E+01 2.47027E+01
0.001 2.46672E+01 2.46904E+01
0.0001 – –
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We first introduce the classic interpolation results. Assume an
unknown target function f : ½a; b� ! R has derivatives up to the
order (k + 1). If a polynomial interpolation Pk of order k satisfies
f ðxiÞ ¼ PkðxiÞ ði ¼ 0;1; . . . ; kÞ at the data points
a ¼ x0 < x1 < . . . < xk ¼ b, then we have the error equation

f ðxÞ � PkðxÞ ¼ f ðkþ1ÞðnÞwkþ1ðxÞ
ðkþ 1Þ! ; ð23Þ

where x 2 ½a; b�, wkþ1ðxÞ ¼ Pk
i¼0ðx� xiÞ, n is a point in ða; bÞ, and

f ðkþ1ÞðnÞis the k + 1st derivative of f at n. Clearly, wkþ1ðxiÞ ¼ 0 and
f ðxiÞ ¼ PkðxiÞ as expected. Assuming good boundedness on the
derivative, and considering the upper bound for any n, the basic
meaning of (23) is that the interpolation will differ from the
unknown target function by a polynomial wkþ1ðxÞ which is zero at
the known data points.

Such an interpolation necessarily yields f 0ðyiÞ ¼ P0
kðyiÞ with

yi 2 ðxi�1; xiÞ ði ¼ 1; . . . ; kÞ due to Rolle’s theorem in Calculus. Let

w�
kðxÞ ¼ Pk

i¼1ðx� yiÞ. For any x 2 ½a; b�, using (23) we see there
exists a point n� 2 ða; bÞ such that

f 0ðxÞ � P0
kðxÞ ¼ f ðkþ1Þðn�Þw

�
kðxÞ
k!

: ð24Þ

We can now give the error bound for overlapping meshes in one
dimension using the interpolation error equations (23) and (24).
Assuming that the exact solution of our model problem has
0.01 0.001 0.0001

2.46530E+01 2.46269E+01 –
2.46877E+01 2.46692E+01 –
2.47020E+01 2.46839E+01 –
2.46863E+01 2.46484E+01 –
– – 2.45857E+01
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bounded derivatives up to the third order we can find local approx-
imations u�

1 (linear approximation on the first element) and u�
2

(quadratic approximation on the second element) such that we
have the following pointwise error bounds

ju� u�
1j 6 Ch1h

�
;

ju� u�
2j 6 Ch2

2h
�
;

d
dx ðu� u�

1Þ
�� �� 6 Ch1;

d
dx ðu� u�

2Þ
�� �� 6 Ch2

2;

ð25Þ

for any point on the overlapped region, where hi is the element size
of the i-th element, and C is a generic constant. We also have on the
overlapped region

ju�
1 � u�

2j 6 Cðh1;h2Þh�
: ð26Þ

Taking the global approximation as u� ¼ w1u�
1 þw2u�

2, the
approximation error over the overlapped region is

ju� u�j21;X1\X2
¼

Z
X1\X2

d
dx

ðu� u�Þ
����

����
2

dx: ð27Þ

Since

d
dx ðu� u�Þ�� �� ¼ d

dx ðw1 þw2Þðu� u�
1Þ þw2ðu�

1 � u�
2Þ

� ��� ��
¼ d

dx ðu� u�
1Þ þw2ðu�

1 � u�
2Þ

� ��� ��
6 d

dx ðu� u�
1Þ

�� ��þ d
dx w2ðu�

1 � u�
2Þ

� ��� ��
6 Cðh1; h2Þ;

ð28Þ

where we use w1 þw2 ¼ 1, equation (22) and the bounds (25) and
(26), we see that the integrand in equation (27) is bounded. There-
fore, the approximation error over the overlapped region tends to
zero as the overlapping size decreases. A solution error independent
of the overlapping size can then directly be obtained. The key is to
show that we are able to find two local approximations that are
close to each other on the overlapped region.

5. Concluding remarks

We reviewed two recently proposed finite element schemes for
reducing the meshing effort in finite element analyses and showed
how these schemes can be used in the AMORE paradigm to solve
practical engineering problems. The overlapping elements com-
bine advantages from both meshless methods and traditional finite
element methods through a composite interpolation. The elements
are insensitive to element distortions and have a good predictive
capability. The method of overlapping meshes is based on a parti-
tion of unity formulation and efficient algorithms for computing
weight functions and performing the numerical integration. Indi-
vidual meshes may overlap freely and local enrichments can be
conveniently imposed.

The overlapping elements give a convergence rate equal to the
order of the polynomials used as degrees of freedom.

For the overlapping meshes, the global convergence rate is
determined by the mesh with the lowest-order elements, provided
that the overlapped regions are sufficiently thick. If an overlapped
region decreases to be very small, the solution may still be accept-
able, but the condition number of the stiffness matrix grows
rapidly. Only for the simple one-dimensional case of overlapping
meshes could we prove, based on classic interpolation theory, that
the error bound is independent of the overlapping size. We thus
suggest using overlapping meshes with moderately thick over-
lapped regions, at least of the magnitude of the smallest element
size.

While only two-dimensional problems were solved in this
paper, the theory given is also valuable for three-dimensional solu-
tions. However, further research is needed for three-dimensional
10
analysis, in particular to assess in detail the computational times
required. Also, in all cases stress recovery techniques might be
investigated and developed to increase the accuracy of the stress
predictions.

Finally, it would be valuable to investigate the use of the over-
lapping elements and meshes in AMORE for general nonlinear
analysis, dynamics, and multi-physics problems to reach the full
potential of these schemes.
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